
First steps in Scientific Programming 

This book was conceived as a quick yet rich guide for anyone 
starting to program in (physical) sciences. Through the years, the 
author has found out that undergrads, graduate students and post-
docs sooner or later face the task of having to do some programming 
to help their research.  Science and research are at the forefront of 
knowledge, which means that on many occasions there are no 
computational tools to deal with the problems faced. Hence, the only 
path is to learn how to do it, do it quickly and do it efficiently. In a 
high percentage of the cases, young scientists have exposure to one 
computer language only, barely touching practical subjects. Today's 
reality is that people in a research environment have to learn to code 
for parallel super-machines or even programming for resources on 
the Cloud. Most of those systems are base on Unix-derived operating 
systems (mostly Linux).  

This book covers issues of programming in a generic way, not tied to 
any particular language because once people learn the principles of programming, then what language 
is used becomes a secondary issue.  Concepts which deal with how computers work are covered, like 
byte order, and internal representation. And, of course, what tools are at the user's disposal to tackle 
from simple to highly complex tasks. Issues particularly useful in the scientific context are covered, like 
testing code, performance enhancers, code scalability, debugging, working with remote machines, 
working with time, coordinate systems, and tips on data processing.
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