
First steps in Scientific Programming

This book was conceived as a quick yet rich guide for anyone
starting to program in (physical) sciences. Through the years, the
author has found out that undergrads, graduate students and post-
docs sooner or later face the task of having to do some programming
to help their research. Science and research are at the forefront of
knowledge, which means that on many occasions there are no
computational tools to deal with the problems faced. Hence, the only
path is to learn how to do it, do it quickly and do it efficiently. In a
high percentage of the cases, young scientists have exposure to one
computer language only, barely touching practical subjects. Today's
reality is that people in a research environment have to learn to code
for parallel super-machines or even programming for resources on
the Cloud. Most of those systems are base on Unix-derived operating
systems (mostly Linux).

This book covers issues of programming in a generic way, not tied to
any particular language because once people learn the principles of programming, then what language
is used becomes a secondary issue. Concepts which deal with how computers work are covered, like
byte order, and internal representation. And, of course, what tools are at the user's disposal to tackle
from simple to highly complex tasks. Issues particularly useful in the scientific context are covered, like
testing code, performance enhancers, code scalability, debugging, working with remote machines,
working with time, coordinate systems, and tips on data processing.

Patricio F. Ortiz
Patricio Ortiz holds a PhD. in astronomy from the University of Toronto,
Canada. He has a keen interest in programming as a mean to create tools
to help his research when no tools were available. He has taught at the
graduate and undergraduate levels in subjects about astronomy,
instrumentation, and applied programming. Throughout his career, Patricio
has interacted with students at any level as well as post-graduates, helping
him identify the most critical subjects needed by young scientists in the
physical sciences and usually not covered by current literature. He has
worked on projects involving automated super-nova detection systems;
detection of fast moving solar system bodies, including Near-Earth objects
and he was involved in the Gaia project (European Space Agency) for nearly
ten years. Patricio also developed an ontology system used since its
conception by the astronomical community to identify equivalent quantities.
He also worked on an Earth Observation project, which gave him the
opportunity to work extensively with high-performance computers, leading
to his development of an automated task submission system which
significantly decreases the execution time of data reduction of extended

missions.

Patricio now works as a Research Software Engineer at the Department of Automatic Control and
Systems Engineering at the University of Sheffield. He uses C, Fortran, Python, Java and Perl as his main
toolkits, and as a pragmatic person, he uses the language which suits a problem best. Amongst his
interests are: scientific data visualisation as a discovery tool, photography and (human) languages.

iBooks

Kindle
+ Print

Contents:
1 The modern computer
1.1 CPU
1.2 Memory
1.3 GPU
1.4 Permanent storage
1.5 The operating system (OS)
2 How computers store information
2.1 How to organise the disks: paths
2.2 Internal representation
2.3 Data-type conversion
2.4 Input/Output
2.5 The price of I/O
2.6 File permissions
2.7 Number of files in a directory
2.8 Pipe operations
3 Which language should I use?
3.1 Languages to consider
3.2 Combining languages
3.3 Languages recap
4 What software can and can't do
4.1 What software can do
4.2 What software cannot do
5 How to write (scientific) software
5.1 Planning before coding
5.2 From typed code to executables
5.3 Build automation tools or make et al.
5.4 Protecting your code
6 Main software elements/tools
6.1 Assignment
6.2 Flow control: Conditionals
6.3 Beware of the = sign
6.4 Flow control: Loops
6.5 Exception handling
6.6 Methods / subprograms
6.7 Memory contents and usage
6.8 Memory management
6.9 Commenting your code
6.10 Code structures and Scope
6.11 String handling
6.12 Basics of flowcharts
6.13 UML: a serious design tool
7 Interfaces
7.1 Software Interface
7.2 Data interface
7.3 Naming files is important
7.4 How to store/distribute files on disk
8 Demo code vs production code
9 Altering someone else's code
10 Finding problems in the code
10.1 Debugging
10.2 Keep historical records

11 Testing code
11.1 Performance test
11.2 Test for memory usage and leaks
11.3 Assume nothing
11.4 Individual variable testing
11.5 Visual testing
12 Performance Enhancers
12.1 Look-Up tables (LUT)
12.2 Avoid repetition
12.3 Avoid expensive operations:
12.4 Looking for minimum/maximum
12.5 Create new elements only when necessary
12.6 Make your searches smart operations
12.7 Numerical compression
12.8 Compression by packing files
12.9 Be aware of overheads
13 Code scalability
14 Working in parallel environments
14.1 Generating unique file names
15 Working with remote computers
15.1 ftp, sftp, scp, rsync, wget
15.2 Connecting to a remote machine
16 Unix basics
16.1 Shells
16.2 Some (very) useful shell features
16.3 The terminal
16.4 Various command line tools
16.5 Unix command examples
16.6 Links: Symbolic links and Hard links
17 Automated execution
18 Random numbers
19 Working with time
19.1 Is there only one way to measure time?
19.2 Different flavours of time
19.3 Leap years
19.4 Leap seconds
19.5 Time differences and usage of Julian Day
19.6 Keeping time in your data variables
19.7 Displaying time in graphs
20 Coordinate systems
20.1 Cartesian coordinates
20.2 Spherical coordinates
20.3 Projections from the Sphere to a plane:
maps
20.4 Angular variables as a function of time
20.5 Angular variables: Spherical Trigonometry
or vectorial algebra?
21 Data Processing
22 Databases: the basics
22.1 What is a database?
22.2 When is a database necessary?
22.3 The choice of a database management
system

