

DEEP

LEARNING INSTITUTE

Neural Network Deployment with DIGITS and TensorRT

Twin Karmakharm Certified Instructor, NVIDIA Deep Learning Institute

DEEP LEARNING INSTITUTE

DLI Mission

Helping people solve challenging problems using AI and deep learning.

- Developers, data scientists and engineers
- Self-driving cars, healthcare and robotics
- Training, optimizing, and deploying deep neural networks

TOPICS

- Caffe
- NVIDIA'S DIGITS
- Deep Learning Approach
- NVIDIA'S TensorRT
- Lab
 - Lab Details
 - Launching the Lab Environment
- Review / Next Steps

Frameworks Many Deep Learning Tools

Caffe

theano

WHAT IS CAFFE?

An open framework for deep learning developed by the Berkeley Vision and Learning Center (BVLC)

- Pure C++/CUDA architecture
- Command line, Python, MATLAB interfaces
- Fast, well-tested code
- Pre-processing and deployment tools, reference models and examples
- Image data management
- Seamless GPU acceleration
- Large community of contributors to the open-source project

caffe.berkeleyvision.org http://github.com/BVLC/caffe

CAFFE FEATURES Deep Learning model definition

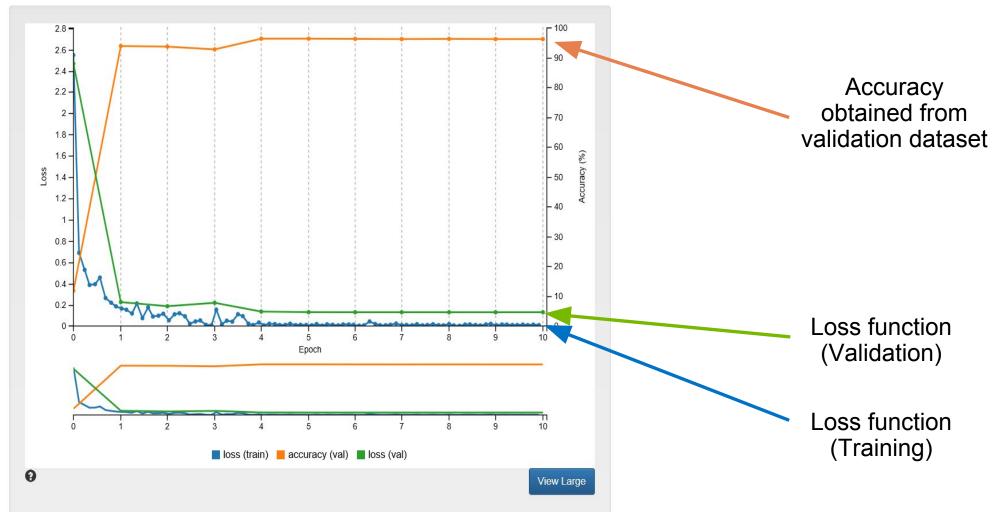
Protobuf model format

- Strongly typed format
- Human readable
- Auto-generates and checks Caffe code
- Developed by Google
- Used to define network architecture and training parameters
- No coding required!

```
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
   num output: 20
   kernel size: 5
   stride: 1
   weight filler {
       type: "xavier"
```

DEEP LEARNING NVIDIA.

NVIDIA'S DIGITS

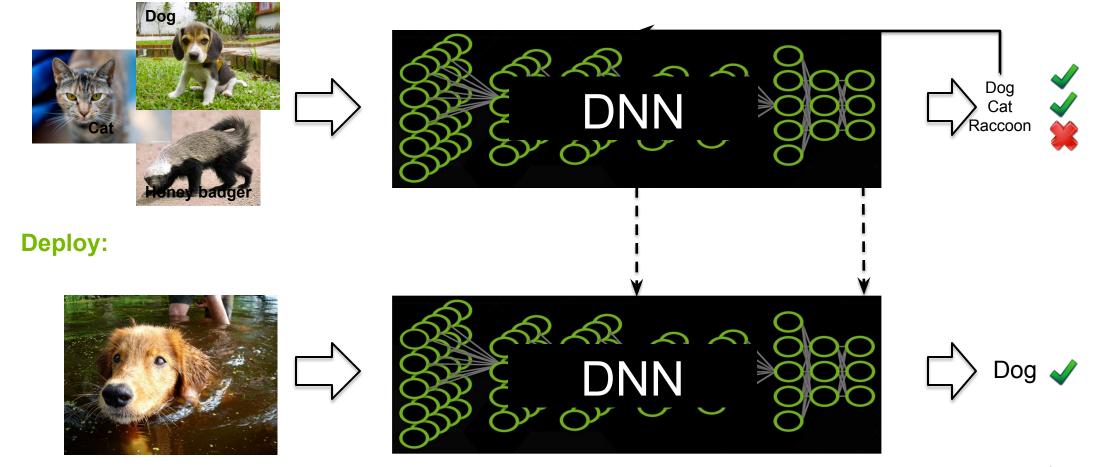

NVIDIA'S DIGITS

Interactive Deep Learning GPU Training System

Process Data	Configure DNN	Monitor Progress	Visualization
DIGITS Intege Cassification Default aerial g ray cautotic boar	Digits New Mode New Image Classification Model Data Transformations select Grave 0 Data Transformations refs State Crap State	Ship_type3.g www.sie wwp.clastication.com Www.sie	Práctions milay 010 nite 010 tone 010 args 0100
<text><text><text></text></text></text>			Perspecta Sector Variable Chains Marine Marine Constrained Sectors Sectors
	Chade		norm1 Mean: 15.101

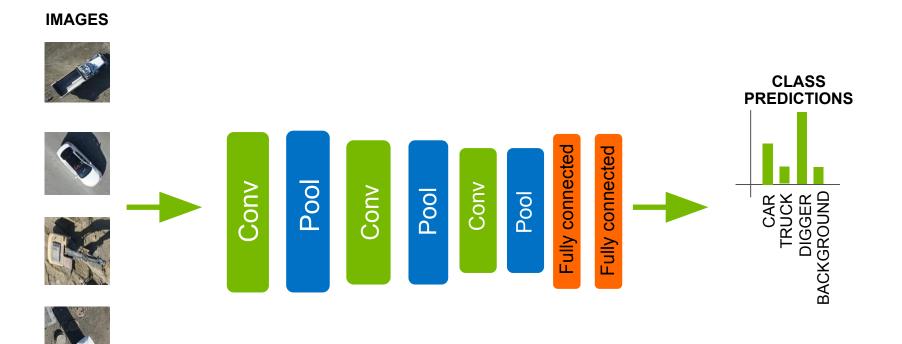
NVIDIA'S DIGITS

DEEP LEARNING APPROACH


Deep Learning Approach

Train:

Errors

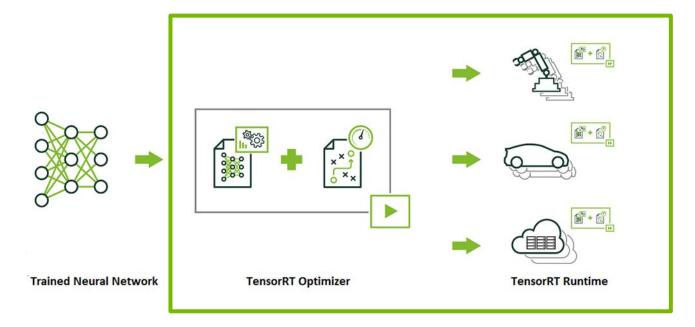

DEEP LEARNING INSTITUTE

12 🕺

Deep Learning Approach

Convolutional Neural Network

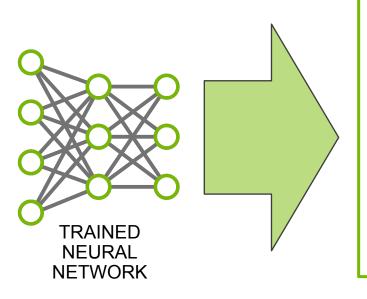
Deep Learning Approach Neural network training and inference



14 NUDIA. DEEP LEARNING INSTITUTE

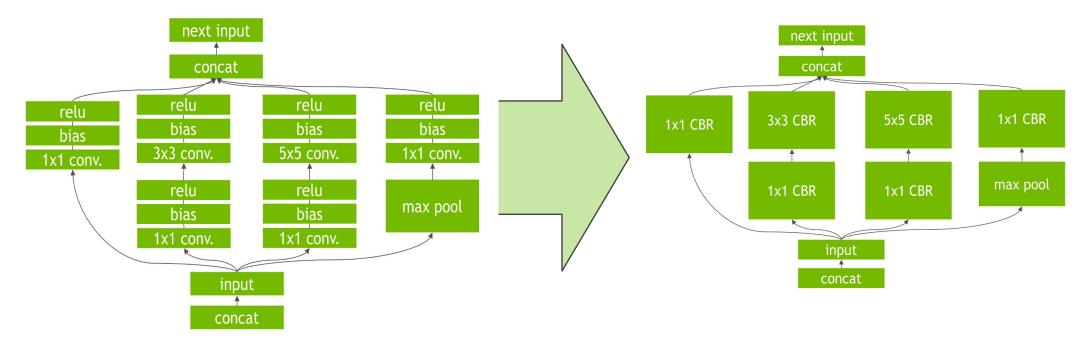
NVIDIA'S TENSORRT

TensorRT

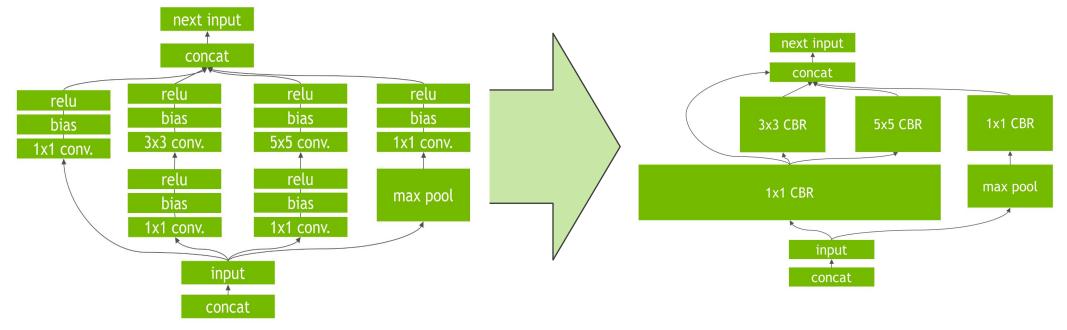

• Inference engine for production deployment of deep learning applications

- Allows developers to focus on developing AI powered applications
 - TensorRT ensures optimal inference performance

TensorRT Optimizer



- Fuse network layers
- Eliminate concatenation layers
- Kernel specialization
- Auto-tuning for target platform
- Select optimal tensor layout
- Batch size tuning


TensorRT Optimizer Vertical Layer Fusion

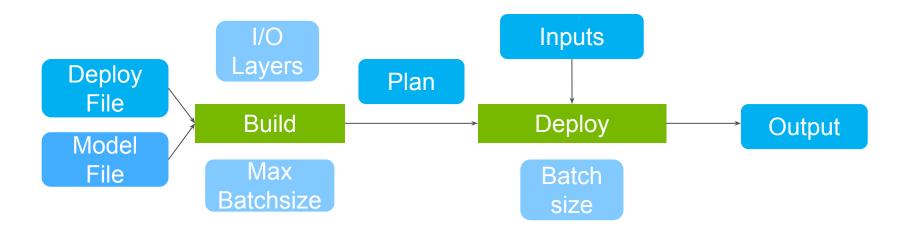
CBR = Convolution, Bias and ReLU

TensorRT Optimizer Horizontal Layer Fusion (Layer Aggregation)

CBR = Convolution, Bias and ReLU

TensorRT Optimizer Supported layers

- Convolution: 2D
- Activation: ReLU, tanh and sigmoid
- Pooling: max and average
- ElementWise: sum, product or max of two tensors
- LRN: cross-channel only
- Fully-connected: with or without bias
- SoftMax: cross-channel only
- Deconvolution


TensorRT Optimizer

- Scalability:
 - Output/Input Layers can connect with other deep learning framework directly
 - Caffe, Theano, Torch, TensorFlow
- Reduced Latency:
 - INT8 or FP16
 - INT8 delivers 3X more throughput compared to FP32
 - INT8 uses 61% less memory compared to FP32

TensorRT Runtime Two Phases

- Build: optimizations on the network configuration and generates an optimized plan for computing the forward pass
- **Deploy:** Forward and output the inference result

TensorRT Runtime

- No need to install and run a deep learning framework on the deployment hardware
- Plan = runtime (serialized) object
 - Plan will be smaller than the combination of model and weights
 - Ready for immediate use
 - Alternatively, state can be serialized and saved to disk or to an object store for distribution
- Three files needed to deploy a classification neural network:
 - Network architecture file (deploy.prototxt)
 - Trained weights (net.caffemodel)
 - Label file to provide a name for each output class

Lab Architectures / Datasets

• GoogleNet

• CNN architecture trained for image classification using the <u>ilsvrc12</u> <u>Imagenet</u> dataset

• 1000 class labels to an entire image based on the dominant object present

pedestrian_detectNet

•CNN architecture able to assign a global classification to an image and detect multiple objects within the image and draw bounding boxes around them

• Pre-trained model provided has been trained for the task of pedestrian detection using a large dataset of pedestrians in a variety of indoor and outdoor scenes

Lab Tasks

- GPU Inference Engine (GIE) = TensorRT
- Part 1: Inference using DIGITS
 - Will use existing model in DIGITS to perform inference on a single image
- Part 2: Inference using Pycaffe
 - Programming production-like deployable inference code
- Part 3: NVIDIA TensorRT
 - Will run TensorRT Optimizer to build a plan
 - Deploy the plan using TensorRT Runtime

NAVIGATING TO QWIKLABS

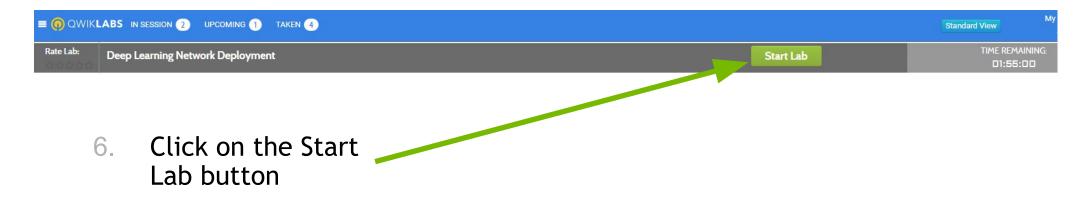
- 1. Navigate to: <u>https://nvlabs.qwiklab.com</u>
- 2. Login or create a new account

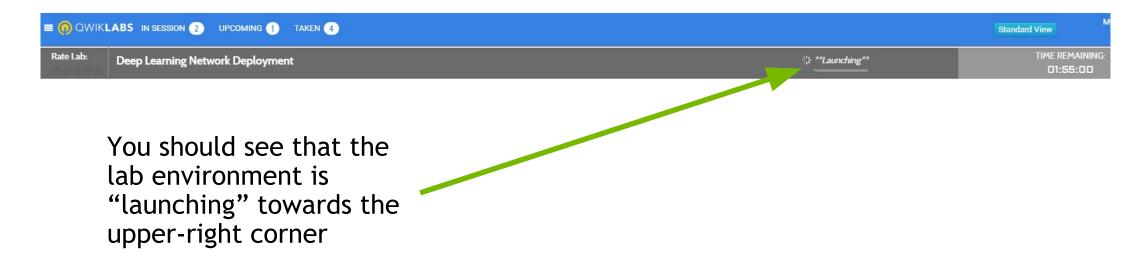
Please use the email address used to register for session

Existing Account	Create a New Account	
E-mail	* First Name	
	* Last Name	
Password	* Company Name	
Remember Me	* E-mail	
	* Password	
Sign In	* Password Confirmation	
Forgot your password?	I agree to the Terms of	
	Service	
	Opt-In. Send me	
	updates about new hands-on learning!	
	Create a New Account	

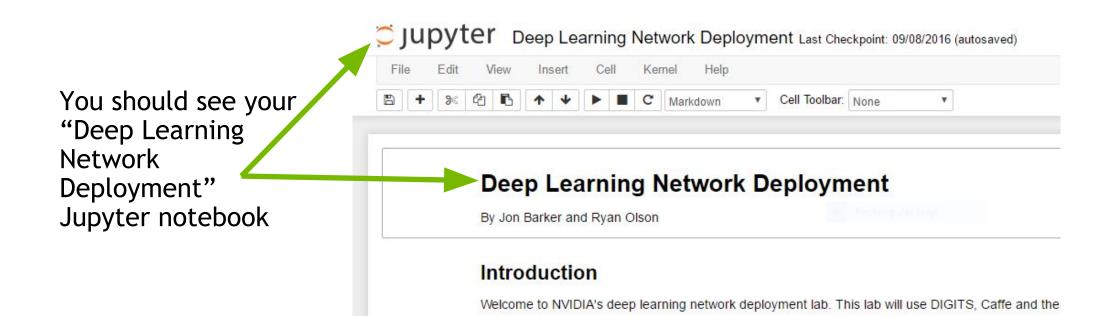
ACCESSING LAB ENVIRONMENT

- Select the event specific In-Session Class
 in the upper left
- 4. Click the "Deep Learning Network Deployment" Class from the list


-Session Class: Deep Learning Labs	▼ 36.5 Total Hours Completed Labs Classes Taker
Class Details	Original Deep Learning Network Deployment Select
O CANNONA Introduction to Deep Learning	Fecting I ar Si Deep learning software frameworks leverage GPU acceleration to train deep neural networks (DNNs). But what do you
O INVINA Approaches to Object Detection using DIGITS	do with a DNN once you have trained it? The process of applying a trained DNN to new test data is often referred to as
O Identifying Whale Sounds with Audio Classification	inference or deployment. In this lab you will test three different approaches to deploying a trained DNN for inference. The
	first approach is to directly use inference functionality within a deep learning Duration: 90 min. framework, in this case DIGITS and Caffe.
GINNER Introduction to RNNs	The second approach is to integrate Access Time: 115 min. inference within a custom application by using a deep learning framework API, again Setup Time: 6 min. using Caffe but this time through it's Python
O Exploring TensorFlow on GPUs	API. The final approach is to use the NVIDIA Level: Beginner High PerformanceGPU Inference Engine (TensorRTGIE) which will automatically
O Introduction to Deep Learning with R and MXNet	create an optimized inference run-time from a trained Caffe model and network description file. You will learn about the role

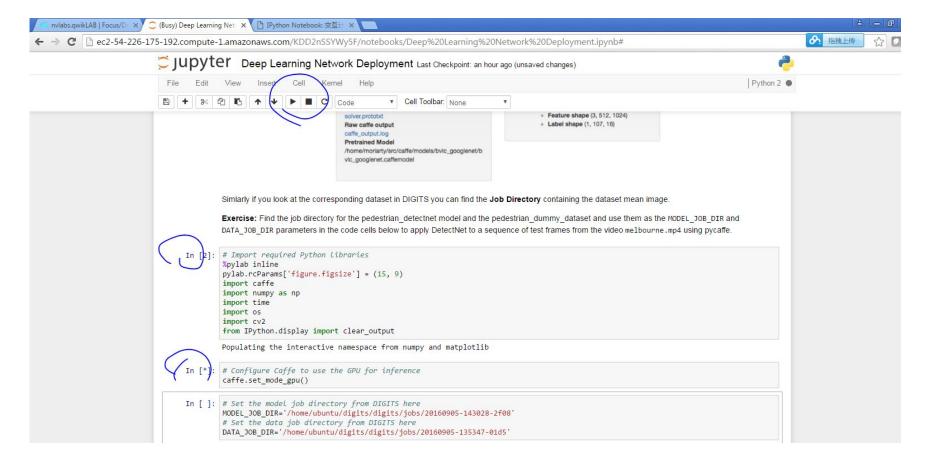

Session Class: Deep Learning Labs	▼ 36.5 Total Hours Completed Labs Classes T
Class Details	A Select Select
O Communication to Deep Learning	Deep learning software frameworks leverage GPU acceleration to train deep neural networks (DNNs). But what do you
O Commune Approaches to Object Detection using DIGITS	do with a DNN once you have trained bNN to The process of applying a trained DNN to new test data is often referred to as
O Identifying Whale Sounds with Audio Classification	inference or deployment. In this lab you will test three different approaches to deploying a trained DNN for inference. The
O Commune Deep Learning Network Deployment	first approach is to directly use inference functionality within a deep learning Duration: 90 mir framework, in this case DIGITS and Caffe. The second approach is to integrate Access Time: 115 mir
C CINVERA Introduction to RNNs	The second approach is to integrate Access Time: 115 mir inference within a custom application by using a deep learning framework API, again Setup Time: 6 mir using Caffe but this time through its Python
O Exploring TensorFlow on GPUs	API. The final approach is to use the NVIDIA ^{Level:} Beginne High PerformanceGPU Inference Engine (TensorRTGIE) which will automatically
anvma Introduction to Deep Learning with R and MXNet	create an optimized inference run-time from a trained Caffe model and network description file You will be run about the rule.

- 5. Click on the Select button to launch the lab environment
 - After a short wait, lab Connection information will be shown
 - Please ask Lab Assistants for help!



CONNECTING TO THE LAB ENVIRONMENT

(LABS IN SESSION 2 UPCOMING 1 TAKEN 4	Standard	View
Deep Learning Network Deployment	End	TIME REMAININ 01:54:21
	Lab Connection Please follow the lab instructions to connect to your lab Warning: Do not transmit data into the AWS Console to or the lab you are taking.	that is not related t
	Click here to launch your lab.	
Click on "here" to access your lab environment / Jupyter notebook		



CONNECTING TO THE LAB ENVIRONMENT

Jupyter Notebook Introduction Interface: Run

STARTING DIGITS

Using DIGITS, anyone can easily get started and interactively train their NVIDIA, located here: <u>https://github.com/NVIDIA/DIGITS</u>. However, DIGI

Inference using DIGITS 1

Now click here to open DIGITS in a separate tab. If at any time DIGITS a

The DIGITS server you will see running contains two neural networks list

Home

Group Jobs: 🗹

No Jobs Running

Instruction in Jupyter notebook will link you to DIGITS

ACCESSING DIGITS

- Will be prompted to enter a username to access DIGITS
 - Can enter any username
 - Use lower case letters

Getting Started with Dec × C Getting Started w		±
	hazonaws.com:5000/login?next=%2Fdatasets%2Fimages%2Fclassification%2Fnew	Å
DIGITS		Login Info ∍ About ∍
	Submit	

REVIEW / NEXT STEPS

WHAT'S NEXT

- Use / practice what you learned
- Discuss with peers practical applications of DNN
- Reach out to NVIDIA and the Deep Learning Institute
- Look for local meetups
- Follow people like Andrej Karpathy and Andrew Ng

WHAT'S NEXT

TAKE SURVEY

...for the chance to win an NVIDIA SHIELD TV.

Check your email for a link.

ACCESS ONLINE LABS

Check your email for details to access more DLI training online.

ATTEND WORKSHOP

Visit www.nvidia.com/dli for workshops in your area.

JOIN DEVELOPER PROGRAM

Visit https://developer.nvidia.com/join for more.

40 NUDIA. DEEP LEARNING INSTITUTE

GTC AROUND THE WORLD

GTC CHINA BEIJING SEPTEMBER 25 -27, 2017 GTC EUROPE MUNICH OCTOBER 10 - 12, 2017

GTC ISRAEL TEL AVIV OCTOBER 18, 2017

GTC DC WASHINGTON, DC NOVEMBER 1 - 2, 2017

GTC JAPAN TOKYO DECEMBER 12 - 13, 2017 GTC 2018 SILICON VALLEY MARCH 26 - 29, 2018

WWW.GPUTECHCONF.COM

Instructor: Twin Karmakharm

www.nvidia.com/dli

Join the Conversation #GTC18

GPU TECHNOLOGY CONFERENCE

CONNECT

Connect with technology experts from NVIDIA and other leading organisations.

LEARN

Gain insight and valuable hands-on training through hundreds of sessions and research posters.

DISCOVER

Discover the latest breakthroughs in fields such as autonomous vehicles, HPC, smart cities, VR, robotics, and more.

INNOVATE

Hear about disruptive innovations as startups and researchers present their work.

USE CODE <u>NVMDIERINGER</u> TO SAVE 25% | REGISTER AT WWW.GPUTECHCONF.EU

Join us at Europe's premier conference on artificial intelligence.

9-11 October 2018 at the International Congress Centre, Munich.

Lab Debug Can't display Ipython Notebook?

IPython Notebook

- Chrome/Firefox/Safari recommended. IE will work but not as well
- Websockets are required you can test at <u>websocketstest.com</u>
 - Look for this result:

Connected	Yes 🗸
Data Receive	Yes 🗸
Data Send	Yes V
Echo Test	Ves 🖌
Sorvertmo	2016/024 02:42:20

- Execute cells with ctrl+enter or pressing play button
- 0

Lab Debug Don't know if cell is running??

You should see In[*] and not In[] or In[<some number>].

Solid grey circle in the top-right of the browser window

If you only see #1 and not #2, then you need to try the following in order:

Press the stop button on the toolbar. Try again.

Click Kernel -> Restart. Try again.

Save the Notebook and refresh the page. Try again.

End the lab from the qwikLABS page and start a new instance. All work will be lost. (Please let me know before you do this)

Lab Debug Reverse to some checkpoint

File Edit View	Insert Cell Kernel Help		Python 2 O
New Notebook		¥	
Save and Checkpoint	>duction e to NVIDIA's deep learning network deployment lab. This lab will	use DIGITS, Caffe and the GPU Inference End	ine (GIE) for deploying deep peural
	s trained in DIGITS. You will learn some of the factors that affect of of how to use a neural network for efficient image classification v	data throughput and latency during neural netw	ork inference. You will also see an
Print Preview Download as	Learning Network Deployment		
Trusted Notebook	Barker and Ryan Olson		
Close and Halt	1: Inference using DIGITS		
Deep-le	arning networks typically have two primary phases of development	nt: training and inference	
Neura	l network training and inference		
Solving	a supervised machine learning problem with deep neural network	s involves a two-step process.	
weights	t step is to train a deep neural network on massive amounts of lat or parameters that enable it to map input data examples to corre as the objective function is minimized with respect to the network n during training in order to estimate real-world performance.	ct responses. Training requires iterative forward	and backward passes through the
14	BELLED TRAINING DE	EP NEURAL NETWORK	OBJECT CLASS PREDICTIONS

