

DEEP

LEARNING INSTITUTE

Object Detection with DIGITS

Twin Karmakharm Certified Instructor, NVIDIA Deep Learning Institute

DEEP LEARNING INSTITUTE

DLI Mission

Helping people solve challenging problems using AI and deep learning.

- Developers, data scientists and engineers
- Self-driving cars, healthcare and robotics
- Training, optimizing, and deploying deep neural networks

TOPICS

- Lab Perspective
- Object Detection
- NVIDIA's DIGITS
- Caffe
- Lab Discussion / Overview
- Lab Review

LAB PERSPECTIVE

WHAT THIS LAB IS

Discussion/Demonstration of object detection using Deep Learning

• Hands-on exercises using Caffe and DIGITS

WHAT THIS LAB IS NOT

Intro to machine learning from first principles

• Rigorous mathematical formalism of convolutional neural networks

• Survey of all the features and options of Caffe

ASSUMPTIONS

- You are familiar with convolutional neural networks (CNN)
- Helpful to have:
 - Object detection experience
 - Caffe experience

TAKE AWAYS

- You can setup your own object detection workflow in Caffe and adapt it to your use case
- Know where to go for more info
- Familiarity with Caffe

OBJECT DETECTION

COMPUTER VISION TASKS

Image Classification

Image Classification + Localization

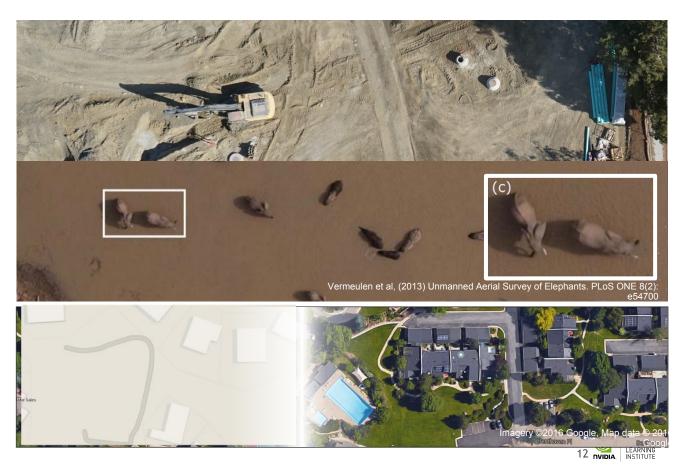
Object Detection

Image Segmentation

(inspired by a slide found in cs231n lecture from Stanford University)

OBJECT DETECTION

- Object detection can identify and classify one or more objects in an image
- Detection is also about localizing the extent of an object in an image
 - Bounding boxes / heat maps

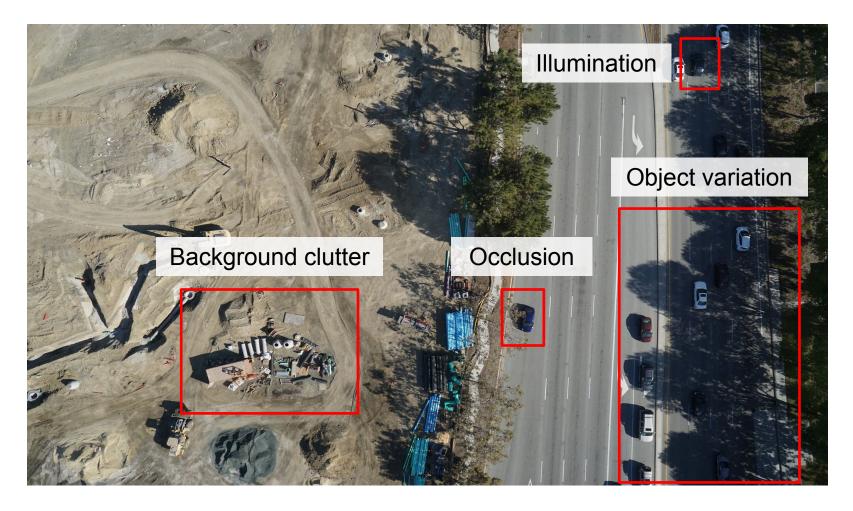

- Training data must have objects within images labeled
 - Can be hard to find / produce training dataset


OBJECT DETECTION IN REMOTE SENSING IMAGES

Broad applicability

- Commercial asset tracking
- Humanitarian crisis mapping
- Search and rescue
- Land usage monitoring
- Wildlife tracking
- Human geography
- Geospatial intelligence production
- Military target recognition

OBJECT DETECTION



EXTRACT PATCHES

GENERATE CANDIDATE DETECTIONS

CHALLENGES FOR OBJECT DETECTION

ADDITIONAL APPROACHES TO OBJECT DETECTION ARCHITECTURE

- R-CNN = Region CNN
- Fast R-CNN
- Faster R-CNN Region Proposal Network
- RoI-Pooling = Region of Interest Pooling

NVIDIA'S DIGITS

NVIDIA'S DIGITS

Interactive Deep Learning GPU Training System

Process Data	Configure DNN	Monitor Progress	Visualization
DIGTS Intege Classification Detect	Digits New Mode New Image Classification Model Data Transformations select transf Data Transformations rest of transformations Data Transformations	DOTS Image Classification Model ship_type3 g may classification model ////////////////////////////////////	Prédicions military (11) cuitor (11) tools (11) args (11)
<text><text></text></text>			Interpretation Matrix Confliction Matrix Registration Sector (1) Neglistration Sector (2) Operation Sector (2) Neglistration Sector (2) <
	Croate		norm1 Mean 15.101

WHAT IS CAFFE?

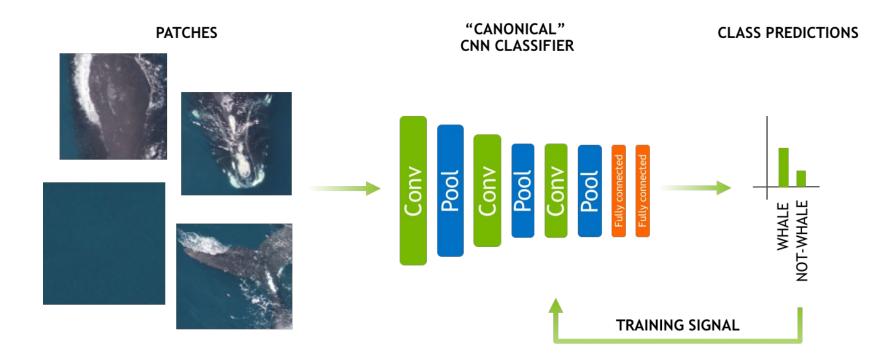
An open framework for deep learning developed by the Berkeley Vision and Learning Center (BVLC)

- Pure C++/CUDA architecture
- Command line, Python, MATLAB interfaces
- Fast, well-tested code
- Pre-processing and deployment tools, reference models and examples
- Image data management
- Seamless GPU acceleration
- Large community of contributors to the open-source project

caffe.berkeleyvision.org http://github.com/BVLC/caffe

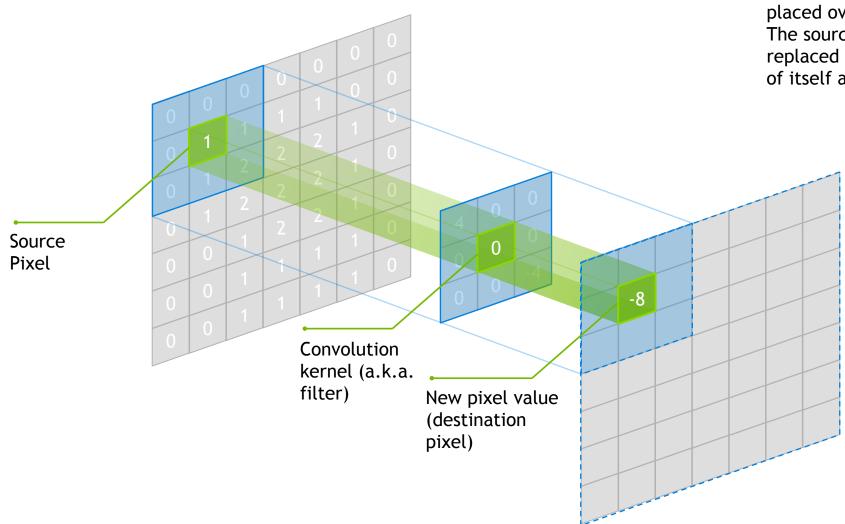
CAFFE FEATURES Deep Learning model definition

Protobuf model format


- Strongly typed format
- Human readable
- Auto-generates and checks Caffe code
- Developed by Google
- Used to define network architecture and training parameters
- No coding required!

```
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
   num output: 20
   kernel size: 5
   stride: 1
   weight filler {
       type: "xavier"
```

20 NVIDIA.


LAB DISCUSSION / OVERVIEW

TRAINING APPROACH 1 - SLIDING WINDOW

CONVOLUTION

Center element of the kernel is placed over the source pixel. The source pixel is then replaced with a weighted sum of itself and nearby pixels.

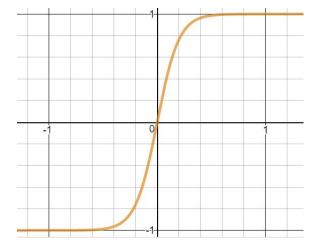
TRAINING APPROACH 1 - POOLING

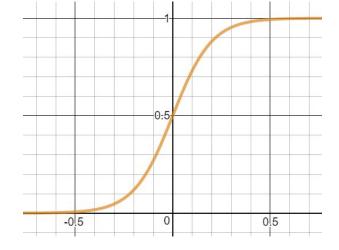
- Pooling is a down-sampling technique
 - Reduces the spatial size of the representation
 - Reduces number of parameters and number of computations (in upcoming layer)
 - Limits overfitting
- No parameters (weights) in the pooling layer
- Typically involves using MAX operation with a 2 X 2 filter with a stride of 2

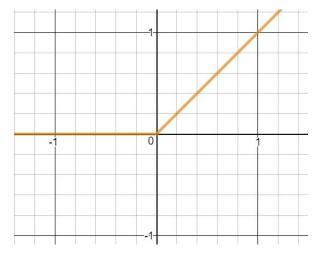
TRAINING APPROACH 1 - DATASETS

Two datasets

- First contains the wide area ocean shots containing the whales
 - This dataset is located in data_336x224
- Second dataset is ~4500 crops of whale faces and an additional 4500 random crops from the same images
 - We are going to use this second dataset to train our classifier in DIGITS
 - These are the "patches"


TRAINING APPROACH 1 - TRAINING


• Will train a simple two class CNN classifier on training dataset


- Customize the Image Classification model in DIGITS:
 - Choose the Standard Network "AlexNet"
 - Set the number of training epochs to 5

Activation functions

tanh

Sigmoid

ReLU

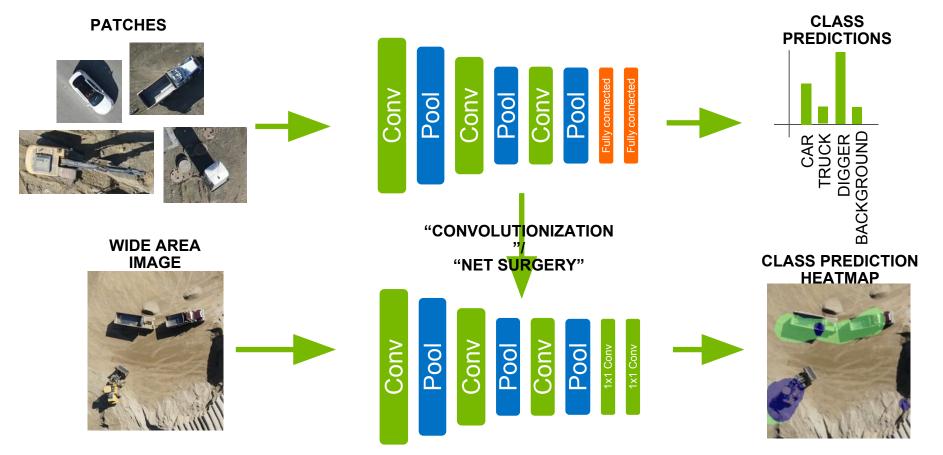
TRAINING APPROACH 1 - SLIDING WINDOW

- Will execute code shown below
 - Example of how you feed new images to a model
 - In practice, would write code in C++ and use TensorRT

import numpy as np import matplotlib.pyplot as plt import caffe import time

MODEL_JOB_NUM = '20160920-092148-8c17' ## Remember to set this to be the job number for your model DATASET_JOB_NUM = '20160920-090913-a43d' ## Remember to set this to be the job number for your dataset

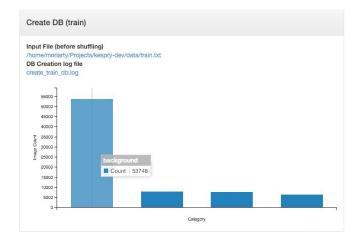
MODEL_FILE = '/home/ubuntu/digits/digits/jobs/' + MODEL_JOB_NUM + '/deploy.prototxt'# Do not changePRETRAINED = '/home/ubuntu/digits/digits/jobs/' + MODEL_JOB_NUM + '/snapshot_iter_270.caffemodel'# Do not changeMEAN_IMAGE = '/home/ubuntu/digits/digits/jobs/' + DATASET_JOB_NUM + '/mean.jpg'# Do not change

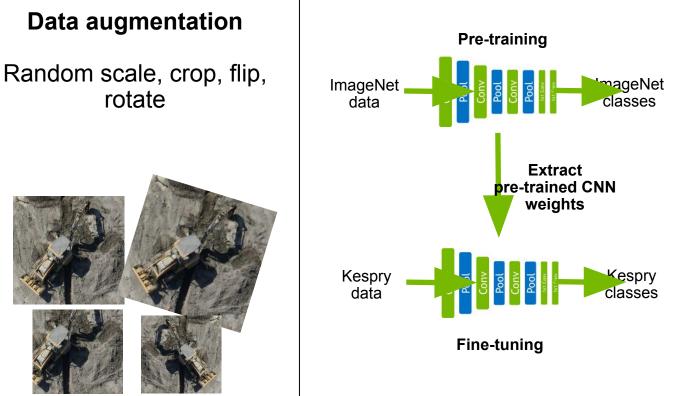

load the mean image
mean_image = caffe.io.load_image(MEAN_IMAGE)

Choose a random image to test against RANDOM_IMAGE = str(np.random.randint(10)) IMAGE_FILE = 'data/samples/w_' + RANDOM_IMAGE + '.jpg'

TRAINING APPROACH 2

Fully-Convolutional Network (FCN)


TRAINING APPROACH 2 - EXAMPLE

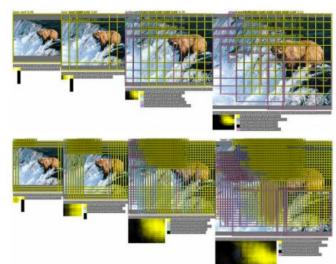

Alexnet converted to FCN for four class classification

TRAINING APPROACH 2 - FALSE ALARM MINIMIZATION


Transfer learning

LEARNING

31 NIDIA.


$$E = -\frac{1}{N} \sum_{n=1}^{N} H_{l_n} \log(\hat{p}_n)$$

Imbalanced dataset and InfogainLoss

TRAINING APPROACH 2 - INCREASING FCN PRECISION

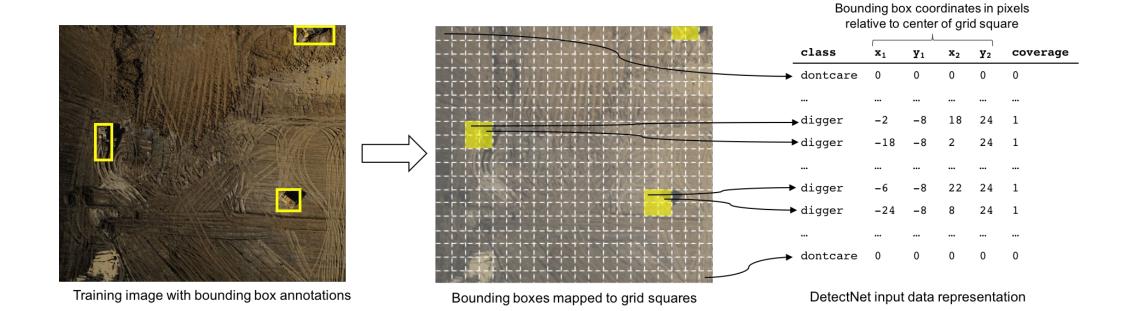
Multi-scale and shifted inputs

Detection using Convolutional Networks, Sermanet et al., 2014

OverFeat: Integrated Recognition, Localization and

greedy merging procedure

Slide credit: Fei-Fei Li & Andrej Karpathy, Stanford cs231n


TRAINING APPROACH 3 - DETECTNET

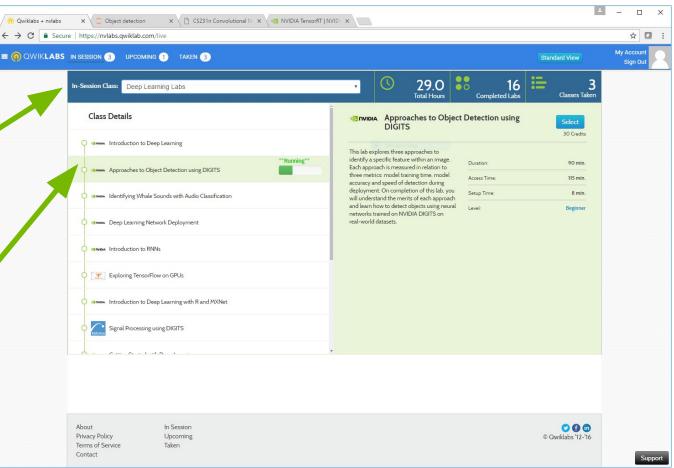
- Train a CNN to simultaneously
 - Classify the most likely object present at each location within an image
 - Predict the corresponding bounding box for that object through regression
- Benefits:
 - Simple one-shot detection, classification and bounding box regression pipeline
 - Very low latency
 - Very low false alarm rates due to strong, voluminous background training data

TRAINING APPROACH 3 - DETECTNET

Train on wide-area images with bounding box annotations

NAVIGATING TO QWIKLABS

- 1. Navigate to: <u>https://nvlabs.qwiklab.com</u>
- 2. Login or create a new account


QWIKLABS		
Existing Account	Create a New Account	
E-mail	* First Name	
Password	* Last Name	
	* Company Name	
Remember Me	* E-mail	
	* Password	
Sign In Forgot your password?	* Password Confirmation	
rorgot your password:	l agree to the Terms of Service	
	Opt-in. Send me valuable promos and updates about new	
	hands-on learning!	
	Create a New Account	

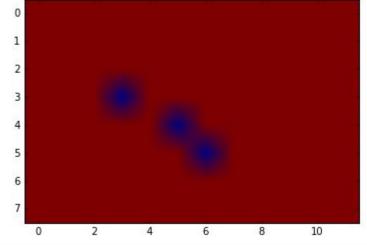
ACCESSING LAB ENVIRONMENT

- Select the event specific
 In-Session Class in the upper left
- 2. Click the "Approaches to Object Detection Using DIGITS" Class from the list

*** Model building may take some time and may appear to initially not be progressing ***

LAB REVIEW

TRAINING APPROACHS


• Approach 1:

- Patches to build model
- Sliding window looks for location of whale face

Total inference time: 10.5373151302 seconds

Total inference time: 10.5373151302 seconds

TRAINING APPROACHS

- Approach 2:
 - Fully-convolut ion network (FCN)

241 242 layer { 243 name: "pool5" 244 type: "Pooling" 245 bottom: "conv5" top: "pool5" 246 247 pooling_param { 248 pool: MAX 249 kernel_size: 3 250 stride: 2 251 } 252 253 laver { 254 name: "fc6" 255 type: "InnerProduct" 256 bottom: "pool5" 257 top: "fc6" 258 param { 259 lr_mult: 1 260 decay mult: 1 261 3 262 param { 263 lr_mult: 2 264 decay mult: 0 265 266 inner_product_param { 267 num_output: 4096 268 weight filler { 269 type: "gaussian" 270 std: 0.005 271 272 bias_filler { 273 type: "constant" 274 value: 0.1 275 } 276 } 277 278 layer { 279 name: "relu6' 280 type: "ReLU" 281 bottom: "fc6' 282 top: "fc6" 283 }

layer { name: "conv6" type: "Convolution" bottom: "pool5" top: "conv6" param { lr mult: 1.0 decay mult: 1.0 param { lr mult: 2.0 decay_mult: 0.0 convolution param { num output: 4096 pad: 0 kernel size: 6 weight filler { type: "gaussian" std: 0.01 bias filler { type: "constant" value: 0.1 3 laver { name: "relu6" type: "ReLU" bottom: "conv6" top: "conv6"

TRAINING APPROACHS

Approach 3:
 DetectNet

Source image

Inference visualization

bbox-list

WHAT'S NEXT

- Use / practice what you learned
- Discuss with peers practical applications of DNN
- Reach out to NVIDIA and the Deep Learning Institute
- Attend local meetup groups
- Follow people like Andrej Karpathy and Andrew Ng

WHAT'S NEXT

TAKE SURVEY

...for the chance to win an NVIDIA SHIELD TV.

Check your email for a link.

ACCESS ONLINE LABS

Check your email for details to access more DLI training online.

ATTEND WORKSHOP

Visit www.nvidia.com/dli for workshops in your area.

JOIN DEVELOPER PROGRAM

Visit https://developer.nvidia.com/join for more.

42 NUDIA. DEEP LEARNING INSTITUTE

GTC AROUND THE WORLD

GTC CHINA BEIJING SEPTEMBER 25 -27, 2017 GTC EUROPE MUNICH OCTOBER 10 - 12, 2017

GTC ISRAEL TEL AVIV OCTOBER 18, 2017

GTC DC WASHINGTON, DC NOVEMBER 1 - 2, 2017

GTC JAPAN TOKYO DECEMBER 12 - 13, 2017 GTC 2018 SILICON VALLEY MARCH 26 - 29, 2018

WWW.GPUTECHCONF.COM

Instructor: Charles Killam, LP.D.

www.nvidia.com/dli

