

DEEP

LEARNING

INSTITUTE

Image Classification with DIGITS

NVIDIA Deep Learning Institute

DEEP LEARNING INSTITUTE

DLI Mission

Helping people solve challenging problems using AI and deep learning.

- Developers, data scientists and engineers
- Self-driving cars, healthcare and robotics
- Training, optimizing, and deploying deep neural networks

Agenda

- Intro to Deep Learning
- Training vs. Programming
- Train our first neural network Lab
- How networks "learn"
- Increasing performance Lab
- Next Steps

WHAT IS DEEP LEARNING?

ACCOMPLISHING COMPLEX GOALS

SWEEPING ACROSS INDUSTRIES

- > Image/Video classification
- Speech recognition
- Natural language processing > Drug discovery

> Cancer cell detection

> Diabetic grading

- ➢ Video captioning
- > Content based search
- > Real time translation
- ➤ Face recognition
- ➤ Video surveillance
- Cyber security

- > Pedestrian detection
- ➤ Lane tracking
- > Recognize traffic signs

TRANSFORMING RESEARCH

"Seeing" Gravity In Real Time

Accelerating Drug Discovery

92% believe AI will impact their work

93%

using deep learning seeing positive results

insideHPC.com Survey November 2016

Difference in Workflow

Deep/End-to-End Learning [2012 : now]

Traditional Workflow

Challenge in Slack channel: How would you describe this image to someone (or something) blind?

Difficult: From it's raw pixels. Medium: From geometric primitives (lines, curves, colors) Easy: Using any words that you may know

Deep Learning Workflow

Experience: <u>Trust</u> Neural Network to learn features and model by providing inputs and outputs.

Key Skill: Experience (data) creation

Deep/End-to-End Learning [2012 : now] Input Simple Complex Model/ Features Features Mapping Output

1 = Louie 0= Not Louie .85 = 85% confident Louie

1 = Louie 0= Not Louie .85 = 85% confident Louie

Yes, this beagle is Louie!

1 = Louie 0= Not Louie .85 = 85% confident Louie

No, not Louie!

1 = Louie 0= Not Louie .85 = 85% confident Louie

No, not Louie!

1 = Louie 0= Not Louie .85 = 85% confident Louie

Yup, that's Louie!

1 = Louie 0= Not Louie .85 = 85% confident Louie

Yea, that's Louie!

1 = Louie 0= Not Louie .85 = 85% confident Louie

Yes! Another epoch?

Training a network with data Lab

HANDWRITTEN DIGIT RECOGNITION

HELLO WORLD of machine learning

WHAT THIS LAB IS

- An introduction to:
 - Deep Learning
 - Workflow of training a network
 - Understanding the results

 Hands-on exercises using DIGITS for computer vision and classification

NVIDIA'S DIGITS

NVIDIA DIGITS

Interactive Deep Learning GPU Training System

Process Data	Configure DNN	Monitor Progress	Visualization
DIGITS Intege Classification Dataset	DIGITS Ver Model	CIGITS Image Classification Model	Predictions (1) mitary (1) cute (1) bots (1) congra (1) sal (1)
Job Information Job Information Job Dimetery Instruction Leage Type Leage Type Leage Constructors Leage Type Leage Constructors Leage Construct	Solver Options Tabling species 30 Seglet Interval (in species)	Nameral (Science) ship, byte Nameral (Science) ship, byte Nameral (Science) science) Rest of science) science) Rest of scie	Description Existing Valuation data Activations Marcolassic 50.001 -00 Total of the second s
Create DB (train) Input file (before shuffing) Isolation 195433 195433	type: "Data" typ: star" typ: star"	and a second and a	Conv1 Mexe: 7:17999-07 Weights (Convolution tayer)
2000- 1000- 1000- 1000- 10	Bit character (Bock) • • • • • • • • • • • • • • • • • • •		
Image mean:	#5 - 0010 X532 (4 08 memory) #7 - 0010 X532 (4 08 memory) #2 - 0010 X532 (4 08 memory) #3 - 0010 X532 (4 08 memory) #3 - 0010 X532 (4 08 memory) #3 - 0010 X532 (4 08 memory) #0 - 001		rom 1 Max: 19.101

WHAT THIS LAB IS NOT

- Intro to machine learning from first principles
- Rigorous mathematical formalism of neural networks
- Survey of all the features and options of tools and frameworks

ASSUMPTIONS

• No background in Deep Learning needed

- Understand how to:
 - Navigate a web browser
 - Download files
 - Locate files in file managers

LAB OVERVIEW

- Learn about the workflow of Deep Learning
 - Load data
 - Expose a network to data
 - Evaluate model results
 - Try different techniques to improve initial results

LAUNCHING THE LAB

NAVIGATING TO QWIKLABS

- 1. Navigate to: <u>https://nvlabs.qwiklab.com</u>
- 2. Login or create a new account

Existing Account	Create a New Account	
E-mail	" First Name	
Decement	* Last Name	
Password	* Company Name	
Remember Me	* E-mail	
	* Password	
Sign In	Password Confirmation	
9 · 1 · .	l agree to the Terms of Service	
	Opt-in. Send me valuable promos and updates about new hands-on learning!	
	Create a New Account	

ACCESSING LAB ENVIRONMENT

- 3. Select the event specific In-Session Class in the upper left
- 4. Click the "Image Classification with DIGITS" Class from the list

LAUNCHING THE LAB ENVIRONMENT

In-Session Class: Deep Learning Labs		Total Hours	Completed Labs	Classes Taken	
C CINNIA Introduction to RNNs		Getting Started with	Deep Learning	Select	
O 2010 Deep Learning for Image Segmentation	Deep learnin human level capabilities a	g is giving machines near of visual recognition of disrupting many			
Exploring TensorFlow on GPUs	applications software with directly from	by replacing hand-coded predictive models learned data. This lab introduces the			
Introduction to Deep Learning with R and MXNet	machine lear hands-on ex peural petwo	ning workflow and provides perience with using deep rks (DNN) to solve a real-world	Duration:	90 min.	
	image classif through the	cation problem. You will walk process of data preparation.	Access Time: Setup Time:	115 min. 8 min.	
Signal Processing using DIGITS	model defini troubleshoot strategies for	tion, model training and ing, validation testing and improving model	Level:	Beginner	
Gamma Getting Started with Deep Learning	of GPU accel	. You will also see the benefits eration in the model training			
Medical Image Segmentation Using DIGITS	have the kno to train a DN classification	wledge to use NVIDIA DIGITS N on your own image dataset.			
• • • Deep Learning with Electronic Health Records					
CNTK Introduction to Image Recognition with CNTK	.				
1					

- 5. Click on the Selectbutton to launch the lab environment
 - After a short wait, lab Connection information will be shown
 - Please ask Lab Assistants for help!

LAUNCHING THE LAB ENVIRONMENT

LAUNCHING THE LAB ENVIRONMENT

CONNECTING TO THE LAB ENVIRONMENT

7. Click on "here" to access your lab environment / Jupyter notebook

CONNECTING TO THE LAB ENVIRONMENT

You should see your "Image Classification with DIGITS" Jupyter notebook

The intent is to build the skills to start experimenting with deep learning. You'll examine:

- · What it means to train vs. to program
- The role of data in artificial intelligence
- How to load data for training a neural network
- · The role of a network in deep learning
- · How to train a model with data

At the end of this lab, you'll have a trained neural network that can successfully classify images to solve a classic deep learning challenge:

How can we digitize handwriting?

Training vs. programming

The fundamental difference between artificial intellegence (AI) and traditional programing is that AI *learns* while traditional algorithms are *programmed*. Let's examine the difference through an example:

Imagine you were asked to give a robot instructions to make a sandwich using traditional computer programming, instruction by instruction. How might you start?

JUPYTER NOTEBOOK

STARTING DIGITS

	CJUPYTET Getting Started	d with Deep Learning (autosaved)		ę
	File Edit View Insert Cell	Kernel Help		Python 2
		Cell Toolbar: Raw Cell Fo	ormat 🔻	
		Filter index Snip	Classification Object Detection Other	
		framework status elapsed	s	
4				
	To start DIGITS, click ber			
	To start DIGITS, <u>click her</u>	<u>e</u> .		
	To start DIGITS, <u>click her</u> Task - Create a	<u>e</u> . Database		
	To start DIGITS, <u>click her</u> Task - Create a First, we want to create a	e. Database a database from the MNIST data. To create a datal	base, select Classification from the New Da	taset menu. At this point you may
	To start DIGITS, <u>click her</u> Task - Create a First, we want to create a need to enter a usernam	Te. Database a database from the MNIST data. To create a datab e. If requested, just enter any name in lower-case.	base, select Classification from the New Da	taset menu. At this point you may
	To start DIGITS, <u>click her</u> Task - Create a First, we want to create a need to enter a usernam In the New Dataset wind	E. Database a database from the MNIST data. To create a datal e. If requested, just enter any name in lower-case. low, you want to set the following fields to the value	base, select Classification from the New Da es specified:	taset menu. At this point you may
	To start DIGITS, <u>click her</u> Task - Create a First, we want to create a need to enter a usernam In the New Dataset wind I mage Type : Grayso	E. Database a database from the MNIST data. To create a datal e. If requested, just enter any name in lower-case. low, you want to set the following fields to the value cale	base, select Classification from the New Da es specified:	taset menu. At this point you may
	To start DIGITS, <u>click her</u> Task - Create a First, we want to create a need to enter a usernam In the New Dataset wind Inthe New Dataset wind Image Type : Grayso Image Size : 28 x 28	Database a database from the MNIST data. To create a datal e. If requested, just enter any name in lower-case. low, you want to set the following fields to the value cale	base, select Classification from the New Da es specified:	taset menu. At this point you may
	To start DIGITS, <u>click her</u> Task - Create a First, we want to create a need to enter a usernam In the New Dataset wind Image Type : Grayso Image Size : 28 x 28 Training Images: ho	Database a database from the MNIST data. To create a datal e. If requested, just enter any name in lower-case low, you want to set the following fields to the value cale	base, select Classification from the New Da es specified:	taset menu. At this point you may
	To start DIGITS, <u>click her</u> Task - Create a First, we want to create a need to enter a usernam In the New Dataset wind Inthe New Dataset wind Inthe New Dataset wind Inthe See State : 28 x 28 Training Images : /home Select Separate tess Test Images : /home	Database a database from the MNIST data. To create a datal e. If requested, just enter any name in lower-case low, you want to set the following fields to the value cale ime/ubuntu/data/train_small t images folder checkbox /ubuntu/data/test small	base, select Classification from the New Da es specified:	taset menu. At this point you may
	To start DIGITS, <u>click her</u> Task - Create a First, we want to create a need to enter a usernam In the New Dataset wind Inthe New Dataset wind Image Type : Grayso Image Size : 28 x 28 Training Images: /home Select Separate tess Test Images : /home Dataset Name : MNI	TE. Database a database from the MNIST data. To create a datal e. If requested, just enter any name in lower-case. low, you want to set the following fields to the value cale ime/ubuntu/data/train_small t images folder checkbox /ubuntu/data/test_small ST Small	base, select Classification from the New Da es specified:	taset menu. At this point you may
	To start DIGITS, <u>click her</u> Task - Create a First, we want to create a need to enter a usernam In the New Dataset wind Image Type : Grayso Image Size : 28 x 28 Training Images: /home Select Separate tes Test Images : /home Dataset Name : MNI Your screen should look	TE. Database a database from the MNIST data. To create a datal e. If requested, just enter any name in lower-case. low, you want to set the following fields to the value cale ime/ubuntu/data/train_small t images folder checkbox /ubuntu/data/test_small ST Small like the image below.	base, select Classification from the New Da es specified:	taset menu. At this point you may

ACCESSING DIGITS

- Will be prompted to enter a username to access DIGITS
 - Can enter any username
 - Use lower case letters

etting Started with Dee × C Getting Started with Dee C ① ec2-54-242-187-85.compute-1.amazon	x DKITS x aws.com.5000/login?next=%2Fdatasets%2Fclassification%2Fnew	☆
DIGITS		Login Info ▼ About ▼
Login		
	Username I Submit	

Evaluating Performance

42 NUTLA.

DEEP LEARNING APPROACH - TRAINING

Process

- Forward propagation yields an inferred label for each training image
- Loss function used to calculate difference between known label and predicted label for each image
- Weights are adjusted during backward propagation
- Repeat the process

Next Challenges

Ideas?

 Increase accuracy and confidence with similar data •Generalize performance to more diverse data

Lab Review

More data Full dataset (10 epochs)

- 99% of accuracy achieved
- No improvements in recognizing real-world images

	Defaults	Training+Data
1	1:99.90%	0:93.11%
2	2:69.03 %	2:87.23 %
3	8:71.37%	8:71.60%
4	8:85.07 %	8:79.72 %
7	0:99.00%	0:95.82 %
8	8:99.69%	8:100.0%
8	8:54.75%	2:70.57 %

DATA AUGMENTATION

Adding inverted images (10 epochs)

	SMALL DATASET	FULL DATASET	+INVERTED
1	1:99.90%	0:93.11%	1:90.84 %
2	2:69.03 %	2:87.23 %	2:89.44%
3	8:71.37 %	8:71.60 %	3:100.0 %
4	8:85.07 %	8:79.72 %	4:100.0 %
72	0:99.00%	0:95.82 %	7:82.84 %
8	8:99.69%	8:100.0%	8:100.0%
8	8:54.75%	2:70.57 %	2:96.27 %

DATA AUGMENTATION Adding Inverted Images

DIGITS	Image Classification Da	taset	smorino (Logout)	Info -	<pre>keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,</pre>
Explorin Show all image Items per page: « 0 1	ng MNIST in s or filter by class: 0 10 - 25 - 50 - 100 2 3 4 5	1 2 3 4 5 6 7 8 3600 »	b) images ,		<pre>featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-6, rotation_range=0., width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., channel_shift_range=0.,</pre>
2	9	7	7	3	<pre>fill_mode='nearest', cval=0., horizontal_flip=False, vertical_flip=False,</pre>
(4	4	6 5	5	<pre>rescale=None, preprocessing_function=None, data_format=K.image_data_format())</pre>
5	3)	8	8	2	
3	1	8	ل 8	6	

MODIFIED NETWORK

Adding filters and ReLU layer (10 epochs)

	SMALL DATASET	FULL DATASET	+INVERTED	ADDING LAYER
1	1:99.90%	0:93.11%	1:90.84 %	1:59.18%
2	2:69.03 %	2:87.23 %	2:89.44 %	2:93.39%
3	8:71.37 %	8:71.60 %	3:100.0 %	3:100.0 %
4	8:85.07 %	8:79.72 %	4:100.0 %	4:100.0 %
72	0:99.00%	0:95.82 %	7:82.84 %	2:62.52 %
8	8:99.69%	8:100.0%	8:100.0%	8:100.0%
8	8:54.75%	2:70.57 %	2:96.27 %	8:70.83 %

MODIFY THE NETWORK

Necessary for less "solved" challenges.

```
layer {
   name: "pool1"
   type: "Pooling"
    . . .
}
layer {
   name: "reluP1"
   type: "ReLU"
   bottom: "pool1"
   top: "pool1"
layer {
   name: "reluP1"
```

```
layer {
  name: "conv1"
  type: "Convolution"
    . . .
    convolution_param {
    num output: 75
    . . .
layer {
    name: "conv2"
    type: "Convolution"
    . . .
    convolution_param {
    num_output: 100
    . . .
```

50 NUDIA.

Next Steps

- Experiment with Image Classification
 - Different datasets
 - Increase performance
- Learn to train existing networks with data for other challenges
- Learn about network construction
- Learn about how to create an image classifier with other frameworks
 - Caffe/Keras
 - Tensorflow
 - Etc.

Appendix

Activation functions

0:5

tanh

Sigmoid

ReLU

CNN - Example

Each pixel is a neuron

Input image

Feature maps

• Each filter in above layer performs convolution on all filters in previous layer, same for colour channels.

Convolution with 2 feature maps

•Each filter in above layer performs convolution on all filters in previous layer, same for colour channels.

•Each filter in above layer performs convolution on all filters in previous layer, same for colour channels.

Convolution with 2 feature maps

•Each filter in above layer performs convolution on all filters in previous layer, same for colour channels.

Pooling

Pooling performs subsampling and reduces network sizeExample of MAX pooling (selecting the maximum value)

Instructor:

www.nvidia.com/dli

